

BIOSTATISTICS- WORKED OUT EXAMPLES

Mr. SPN Kumar, *M. Pharm (Ph.D)* Asst. Professor, Aditya Pharmacy College, Surampalem.

What is Geometric Mean?

• It is the nth root of the product of n values. • GM = $\sqrt[n]{x_1 \cdot x_2 x_3 \dots x_n}$

• The formula for calculation of Geometric Mean is: • $GM = Antilog[\frac{1}{n} \cdot \Sigma Logx]$

• Example:

- Daily incomes of ten workers are given below. Calculate the geometric mean.
- Income (Rs.) 40 45 75 70 85 500 250 36 8 15

X	Log x
40	1.60206
45	1.653213
75	1.875061
70	1.845098
85	1.929419
500	2.69897
250	2.39794
36	1.556303
8	0.90309
15	1.176091

n = 10

 $\cdot \Sigma Logx = 17.6373$

$$GM = Antilog[\frac{1}{n} \cdot \Sigma Logx]$$

= Antilog [(1/10). 17.6373] = <u>1.7637</u>

HARMONIC MEAN

• Harmonic mean (HM) of n values is the reciprocal of the mean of the reciprocals of the values. It is given by the equation.

•
$$HM = Reciprocal[\frac{\Sigma reciprocals}{n}]$$

(or)

$$HM = \left[\frac{n}{\Sigma reciprocals}\right]$$

CALCULATION OF HARMONIC MEAN

Example: Calculate the Harmonic Mean for the following values X: 18 12 16 21 7 9

Х	Reciprocals(1/x)		
18	0.0556		
12	0.0833		
16	0.0625		
21	0.0476		
7	0.1429		
9	0.1111		

$$HM = \left[\frac{n}{\Sigma reciprocals}\right]$$

HM = 6/ 0.5030 = <u>11.929</u>

$$n = 6 \quad \sum \left(\frac{1}{x}\right) = 0.5030$$

WEIGHTED ARITHMETIC MEAN

- Weighted arithmetic mean is defined as the calculation of arithmetic mean by equating the weights to different items in a series according to their relative importance.
- It is given by:

• Weighted mean,
$$\overline{X}_{w} = \left(\frac{\Sigma W X}{\Sigma W}\right)$$

CALCULATION OF WEIGHTED ARITHMETIC MEAN

Calculate the weighted arithmetic mean from the following distribution

Size (X)	10	20	25	15	20
Weight (W)	2	5	1	7	6

Х	W	WX
10	2	20
20	5	100
25	1	25
15	7	105
20	6	120

 $\Sigma W = 21$ $\Sigma W X = 370$

$$\left(\frac{\Sigma W X}{\Sigma W}\right) = 370/21$$
$$= 17.619$$

MEASURES OF DISPERSION

- Range
- Inter-quartile range (or Quartile range)
- Mean deviation
- Variance and Coefficient of variance
- Standard deviation

QUARTILE DEVIATION

- The inter-quartile range or quartile deviation of a group of observations is the interval between the values of the upper quartile and the lower quartile for that group. If lower quartile is Q1 and the upper quartile is Q3 then:
- Interquartile range = Q3 Q1
- Semi-Interquartile range = $\frac{1}{2}[Q3-Q1]$
- Coefficient of Semi-Interquartile range = $\frac{Q3-Q1}{Q3+Q1}$

CALCULATION OF QUARTILE DEVIATION

• Calculate the inter quartile range, quartile deviation and coefficient of quartile deviation, for the following data

Height	5 8	59	60	61	62	63	64	65	66
No. of students	21	25	28	18	20	22	24	23	18

Height	Frequency	Cumulative frequency	
58	21	21	
59	25	46	
60	28	74	
61	18	92	
62	20	112	
63	22	134	
64	24	158	
65	23	181	
66	18	199	
	N= 199		

Size of Q1 =
$$Size of [\frac{N+1}{4}]^{t_h} item = 50^{th}$$
 item

Size of Q3 =
$$Sizeof[\frac{3(N+1)}{4}]^{t_h}item = 150^{th} item$$

Therefore, Q1 = 60Q3 = 64

Interquartile Range	=	Q3-Q1 =	4
Semi-IQR	=	1/2(Q3-Q1)=	2
Coefficient of QD	=	(Q3-Q1)/(Q3+Q1)	0.0323

MEAN DEVIATION

• Mean deviation (MD) is defined as an average or mean of the deviations of the values from the central tendency (i. e mean, median, or mode)

• Mean Deviation (MD) =
$$\frac{\Sigma dx}{N}$$

• MD for frequency distribution =
$$\frac{\Sigma f(x - \overline{x})}{N}$$

• Coefficient of Mean deviation = $\frac{MD}{Mean}$

CALCULATION OF MEAN DEVIATION

• Find the mean deviation from the following data: 10, 20, 26, 32, 23, 15

SI. No.	х	$dx = x - \overline{x}$	dx	
1	10	-11	11	
2	20	-1	1	
3	26	5	5	
4	32	11	11	
5	23	2	2	
6	15	-6	6	
$\sum x = 126$ $\sum dx = 3$				

Coefficient of Mean deviation = $\frac{MD}{Mean}$

= 6/21

= 0.285

$$Mean = \frac{\sum x}{n} = 126/6 = 21$$

Mean deviation =
$$\frac{\Sigma |dx|}{N}$$
 = 36/6= **6**

Thank you..

